
SUBMITTED TO PLDI ’94 3 N OVERMBER 1993 EXTENDED ABSTRACT

THE SYMBOLICS VIRTUAL LISP MACHINE
OR

USING THE DEC ALPHA AS A
PROGRAMMABLE MICRO-ENGINE 1

(EXTENDED ABSTRACT)

P.T. Withington, Scott McKay, Gary Palter 2

Symbolics Inc.
6 Concord Farms

Concord, MA 01742-2727, U.S.A.
ptw@Riverside.SCRC.Symbolics.COM

1+ 508 287 1000

Paul Robertson 2

Dynamic Object Language Group
2 Parsonage Hill

Haverhill, MA 01832, U.S.A.

INTRODUCTION12

Symbolics’ Genera system represents the accu-
mulation of nearly three and a half decades of
software engineering tools, written in several
dialects of the Lisp language and several object-
oriented extensions to Lisp. Traditionally,
Genera has run on a “Lisp Machine”, a line of
custom hardware workstations designed

1Symbolics® and Genera® are registered trademarks and
Virtual Lisp Machine™ and VLM™ are trademarks of
Symbolics, Inc. DEC® is a registered trademark and
Alpha™ and AXP™ are trademarks of Digital Equipment
Corporation.

2Author’s electronic mail addresses are ptw@Riverside.
SCRC.Symbolics.COM, SWM@Stony-Brook.SCRC.
Symbolics.COM, Palter@Stony-Brook.SCRC.Symbolics.
COM, and PRobertson@ACM.ORG, respectively.

specifically to execute the Lisp language.
Because of the limited market, this custom
hardware has never been able to take advantage
of cutting-edge technology such as is available
in commodity, RISC-based workstations. At the
same time, non-standard hardwares such as the
Lisp Machine have fallen into economic
disfavor. Nonetheless, Lisp’s (and the Lisp
Machine’s) capability in prototyping, evolu-
tionary problem solving, and super-complex
problems has retained a small but dedicated
market.

In response to market pressure to provide
Genera’s capabilities on commodity hardware,
Symbolics chose to implement an “emulator”
that would execute the Lisp Machine instruction
set on a standard platform, rather than to port the
approximately 1.5 million lines of Genera
source code to a single Lisp dialect, as would be
necessary to take advantage of a native Lisp

2 THE SYMBOLICS VIRTUAL LISP MACHINE

EXTENDED ABSTRACT 3 NOVEMBER 1993 SUBMITTED TO PLDI ’94

compiler on the same platform. It was felt that
this approach would result in a shorter time-to-
market while still preserving the robustness and
flexibil ity of Genera. At the same time, the
emulator approach has meant that the most
important features of the Lisp machine in
support of Lisp have also been preserved. In
particular, the tagged memory architecture
supporting dynamic typing, the fast exception
handling for complete instruction semantics, and
read and write barriers in support of automatic
storage management have been preserved.

The DEC Alpha RISC architecture offers a full
64-bit memory architecture and multiple-issue
instruction execution. Using the 64-bit (byte-
based) address space we were able to emulate
within a single OSF/1 process both the 40-bit
tagged data and 32-bit (word-based) address
space of the Lisp Machine. With the multiple-
issue instruction execution we were able to take
the approach of using the Alpha as a pro-
grammable micro-engine and write the
emulation of the Lisp Machine instruction set as
if we were writing micro-code. We were
successfully able to utilize the OSF/1 operating
system facilities to replace the I/O subsystem of
the traditional Lisp Machine at a high level, thus
gaining signif icant I/O performance
improvement. The user-program accessible
memory protection facilities of OSF/1 allowed
us to successfully emulate most of the hardware
features of the Lisp Machine in support of
“ephemeral” garbage collection.

The performance of the first version of the Virt-
ual Lisp Machine running on a DEC Alpha AXP
500 is very competitive with the performance of
Symbolics’ most advanced custom hardware.
(This performance can be expected to improve
proportionally as DEC introduces more
powerful versions of the Alpha.) We believe
that a large part of this performance is due to the
“micro-program” approach of the emulator,
which utilizes the instruction and data caches of
the Alpha in a quite different fashion than a
traditional compiled version of the same Lisp
program might. The full paper discusses the
details of our design decisions, implementation,
benchmarks, and some of the surprising results

we observed in tuning the emulator to the Alpha
architecture.

BACKGROUND

The sole purpose of a Lisp Machine is to support
the execution of the Lisp language in hardware.
To that end, all architectural features find their
roots in Lisp. The memory architecture is
“object-oriented”– every memory word
contains an object in the form of a data-type
(tag) and representation, either immediate (data)
or as a reference (pointer) to the representation
of the object. In addition to objects, there are a
small set of “special markers” used for storage-
management bookkeeping (mutating objects),
monitoring (data and call tracing), and
debugging (uninitialized data). The hardware
understands “primitive” type representations.

One of the features of Lisp Machines (one of the
technologies that allowed its creation) is the use
of microcode to implement complex instructions
closely tuned to the language-level concepts of
Lisp. In the ’70s, when the Lisp Machine was
born, compiler technology was poor and
microcoding simplified the compiler writer’s
task while maintaining performance. Today,
advanced compiler technology appears to
obviate the need for microcoding and complex
instruction sets, but we discovered that the
continual climb in processor clock rates (and
resulting increasing mismatch between memory
speeds and instruction execution rate) may mark
the return of micro-programming as a valid
implementation technology. In this case, by
micro-programming, we simply mean another
layer of abstraction between the underlying
hardware execution unit and the instruction
execution model the compiler has as a target,
what has also been termed an interpreter.

A second enabling technology of the Lisp
Machine, is the use of “tagged memory”. While
modern compiler technology (in particular,
flow-analysis, type propagation, and block
compilation) combined with careful type
declarations on the part of the programmer can
provide very competitive Lisp implementations

P. T. WITHINGTON, ET AL. 3

SUBMITTED TO PLDI ’94 3 N OVEMBER 1993 EXTENDED ABSTRACT

on standard architectures, it is not in the
tradition of Lisp to require type declarations.
The use of tagged memory to support dynamic
typing and generic operations allowed the Lisp
machine to give competitive performance in the
absence of carefully declared types, a key
feature in support of its rapid prototyping
capability. Supporting tagged memory was an
important goal of our emulator.

In the full paper, we give an overview of Lisp
Machine architecture, its origin and current
state. We discuss our earlier studies that had
determined emulation on 32-bit address and data
machines would have unacceptable
performance. The advent of true 64-bit
workstations allowed us to revisit that study and
determine that a competitive product was
possible.

DESIGN

We knew there were a number of challenges to
be overcome in developing an emulator, but the
performance bottleneck in all our studies was
the sophisticated memory model of the Lisp
Machine. The “object-ness” of memory is built
in to the hardware at the lowest level. All mem-
ory accesses are data-sensitive, in support of
dynamic typing, monitoring, and garbage collec-
tion. We knew from other work in the field that
comparable garbage collection models were
being supported using the simple page-
protection features underlying most operating
systems. The challenge was to convert the
complex but venerable Genera garbage-collector
to such a scheme with minimal changes. The
full paper discusses the details of the conversion
of the garbage-collector, including moving some
of its supporting routines to “microcode” (i.e.,
implementing them as new instructions in the
software emulator). The emulation of the data-
sensitive memory operation is examined in
detail and several generations of refinement
show how we were able to take better and better
advantage of our understanding of the Alpha
instruction set.

The full paper also discusses other aspects of the
emulator design and some of the lesser goals
such as sharing data with other processes
running under OSF.

IMPLEMENTATION

We built a prototype of the emulator in C, but it
quickly became obvious that we could not
achieve the level of performance desired in C.
Examination of code emitted by the C compiler
showed it took very poor advantage of the
Alpha’s dual-issue capabilities. A second
implementation was done in Alpha assembly
language and is the basis for the current product.

We built a number of tools (in Lisp, running on
Genera) that supported the level of complexity
of the assembly language program we were
attempting. A translator was built that allowed
us to use Lisp as a macro language. One of the
primary benefits of using Lisp was that we could
use all our normal development tools, including
incremental patching, even though we were
working in another machine’s assembly
language. Even more beneficial, however, was
that early on in the project, we were able to
easily graft on to the translator a cycle-counting
tool that allowed one to easily and automatically
“preview” any code fragment and see its total
cycle cost, dual-issues that were taken or
missed, and any free stall slots. Because this
tool was integrated directly with the Genera
editor, we were able to pro-actively optimize our
code, right from the start. The full paper
describes this tool in more detail, with examples,
and compares it with tools that have recently
become available from DEC that attempt to
automatically re-organize executable files. It is
our claim that our tool, because of its interactive
nature, offers many more opportunities for
optimization.

The architecture of the emulator as designed and
eventually implemented is examined in detail in
the full paper. Among the interesting details is
the substitution for the hardware-supported dis-
play of an X-window interface. This came
nearly for free, as earlier projects had already

4 THE SYMBOLICS VIRTUAL LISP MACHINE

EXTENDED ABSTRACT 3 NOVEMBER 1993 SUBMITTED TO PLDI ’94

developed a compatibility package that allowed
Genera to use any X-server as a display.
Similarly, earlier hardware projects to create co-
processor systems, where our custom hardware
would run inside another workstation, had
already defined an architecture that allowed us
to easily substitute OSF disk and network
services for real hardware. One interesting
aspect of this substitution, however, is that the
emulator process acts as an independent host on
the network (it is emulating a complete
workstation) despite sharing underlying network
services with the Alpha workstation.

PERFORMANCE

In order to compare the performance of the emu-
lator against our custom hardware, we used the
standard “Gabriel” Lisp benchmarks, plus our
own “large program” and “user interface”
benchmarks. For the most part, the benchmarks
gave consistent results, but we were puzzled a
number of times when changes that clearly had a
global effect of reducing overall cycle counts
showed inexplicably poorer benchmark results.
After much puzzling and studying, we
eventually realized that the Alpha’s direct-
mapped cache had to be taken into
consideration. This resulted in an effort to
organize our code, effectively into micro-code
“overlays”, by ensuring that commonly called
routines and their siblings were placed
contiguously, and that they would not collide
with themselves in the cache. Similarly, the data
structures of the emulator were reorganized and
placed carefully in memory.

Version 1.0 of the emulator exceeded our initial
performance goals, achieving nearly the perfor-
mance of our high-end custom workstation. It is
currently in use at a number of customer sites
and being used internally for software
development work. A second version is
underway, where we are attempting to further
exploit some of the lessons we learned in the
first implementation.

CONCLUSION

It is our contention that although our Lisp code
is interpreted, our performance may approach or
even surpass that of compiled Lisp code on the
Alpha because our interpreter is acting almost
like a micro-program when it remains resident in
the primary caches. The full paper examines
some anecdotal evidence that supports this
theory, gives some empirical data we have
gathered that also supports this theory, and
compares the idea with studies performed
elsewhere showing the effect of cache-misses on
high clock-rate CPU’s. We speculate that as
execution clock rates continue to increase
(exceeding the speed of even first-level cache
technology) we may come full-circle in
computer architectures and return to a situation
where micro-programming and tagged data are
again valuable implementation techniques.

